Example

As shown, the following table gives the sets of observations obtained while studying the Townsend phenomenon in a gas. Compute the values of the Townsend's primary and secondary ionization coefficients from the data given.

Set 1: Gap distance (mm) Applied voltage V (volts)	0.5 1000	1.0 2000	1.5 3000	2.0 4000	2.5 5000	3.0 6000	3.5 7000	4.0 8000	5.0 10000
Observed current 1(A)	10-13	3×10^{-13}	6×10^{-13}	10-12	4×10^{-12}	10-11	10-10	10-9	5 × 10 ⁻⁷
Set 2: V (volts) I (A)	500 5 × 10 ⁻¹⁴	.1000 1.5×10 ⁻¹⁵	1500 3 × 10 ⁻¹³	2000 6 × 10 ⁻¹³	2500 10 ⁻¹²	3000 5 × 10 ⁻¹²	3500 5 × 10 ⁻¹¹	4000 3 × 10 ⁻¹⁰	4500 10 ⁻⁸

The minimum current observed when 150 V was applied was 5×10^{-14} A.

The current at minimum applied voltage, I_0 , is taken as 5×10^{-14} A, and The values of $\log I/I_0$ versus d for two values of electric field, $E_1 = 20$ kV/cm and $E_2 = 10$ kV/cm are given in Table below

Set 1:									
Gap distance (mm)	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0	5.0
Applied voltage V (volts)	1000	2000	3000	4000	5000	6000	7000	8000	10000
Observed current 1(A)	10-13	3×10^{-13}	6×10^{-13}	10 ⁻¹²	4×10^{-12}	10-11	10 ⁻¹⁰	10-	5 × 10 ⁻⁷
Set 2:									
V (volts)	500	.1000	1500	2000	2500	3000	3500	4000	4500
I(A)	5 × 10 ⁻¹⁴	1.5×10^{-13}	3×10^{-13}	6×10^{-13}	10-12	5×10^{-12}	5 × 10 ⁻¹¹	3×10^{-10}	10 ⁻⁶
Table calculated									
Gap (mm)	0.5	1.0	1.5	2,0	2.5	3.0	3.5	4.0	5.0
I/I_0 for $E_1 = 20 \text{ k V/cm}$	2	6	12	20	80	200	2×103	2×10^4	5 × 10
	0.3010	0.7181	1.0792	1.3010	1.9031	2.3010	3.3010	4.3010	7.6990
I/I_0 for $E_2 = 10 \text{ k V/cm}$	1	3	6	12	20	100	1000	6000	2 × 10
log <i>I/I</i> ₀	0	0.4771	0.7781	1.0792	1.3010	2.0	3.0	3.7781	5.3010

the graph of d versus $\log I/I_0$ is plotted as shown in Fig. below

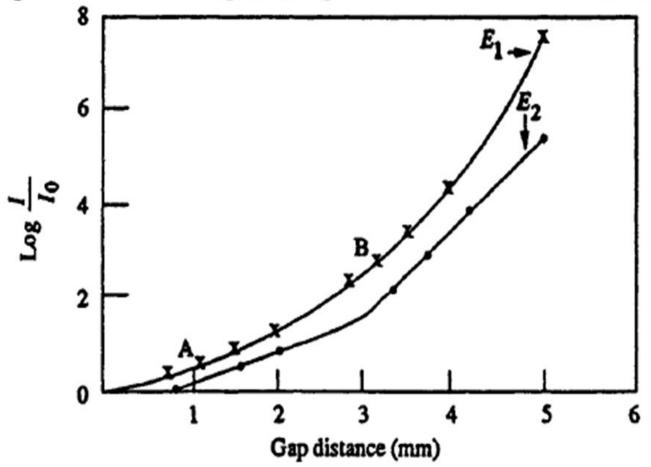
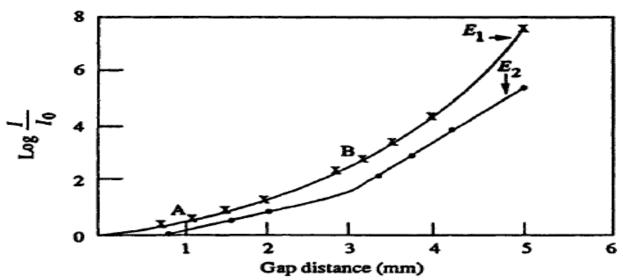



Fig. Log 1/10 as a function of gap distance

Value of α at E_1 (= 20 kV/cm) i.e. α_2 = slope of curve E_1

$$= \frac{2.9}{2.5 \times 10^{-1}}$$
$$= 11.6 \text{ cm}^{-1} \text{ torr}^{-1}$$

Value of α at E_2 (= 10 kV/cm) i.e. α_1 = slope of curve E_2

$$= \frac{13}{2 \times 10^{-1}}$$
$$= 6.5 \text{ cm}^{-1} \text{ torr}^{-1}$$

As the sparking potential and the critical gap distance are not known, the last observations will be made use in determining the values of γ .

For a gap distance of 5 mm, at $E_1 = 20 \text{ kV/cm}$,

$$I = \frac{I_0 \exp(\alpha d)}{1 - \gamma [\exp(\alpha d) - 1]}$$

$$\frac{I}{I_0} = \frac{\exp(\alpha d)}{1 - \gamma [\exp(\alpha d) - 1]}$$

Substituting $\alpha_1 = 11.6$, d = 0.5 cm, and $I/I_0 = 5 \times 10^7$

$$5 \times 10^7 = \frac{\exp(5.8)}{1 - \gamma [\exp(5.8) - 1]}$$
$$= \frac{330.3}{1 - \gamma (330.3 - 1)}$$

OΓ

$$\gamma = 3.0367 \cdot 10^{-3}$$
/cm. torr, at $E_1 = 20 \text{ kV/cm}$

(Check this value with other observations also.)

For

$$E_2 = 10 \,\mathrm{kV/cm}$$

$$\alpha_2 = 6.5/\text{cm.torr}$$

$$d = 0.5 \, \text{cm}$$

and

$$I/I_0 = 2 \times 10^5$$

Substituting these values in the same equation,

$$2 \times 10^5 = \frac{\exp(3.25)}{1\gamma [\exp(3.25) - 1]}$$
$$= \frac{25.79}{1 - \gamma (25.79 - 1)}$$

Or,

$$\gamma = 4.03 \times 10^{-2}$$
/cm . torr, at $E_2 = 10 \text{ kV/cm}$